有3月份和10月份温度,画出散点图
from matplotlib import pyplot as plt
font = {'family': 'SimHei',
'weight': 'bold',
'size': '12'}
plt.rc('font', **font)
plt.rc('axes', unicode_minus=False)
y_3 = [11, 17, 16, 11, 12, 11, 12, 6, 6, 7, 8, 9, 12, 15, 14, 17, 18, 21, 16, 17, 20, 14, 15, 15, 15, 19, 21, 22, 22,
22, 23]
y_10 = [26, 26, 28, 19, 21, 17, 16, 19, 18, 20, 20, 19, 22, 23, 17, 20, 21, 20, 22, 15, 11, 15, 5, 13, 17, 10, 11, 13,
12, 13, 6]
x_3 = range(1, 32) # x和y的数量应该要相等
x_10 = range(50, 81)
# 设置图形形状 长20 宽8
plt.figure(figsize=(20, 8), dpi=80)
# 绘制散点图,label标记散点图
plt.scatter(x_3, y_3, label="3月份")
plt.scatter(x_10, y_10, label="10月份")
# 绘制x轴刻度 _xtick_labels刻度代替_x刻度
_x = list(x_3) + list(x_10)
_xtick_labels = ["3月{}日".format(i) for i in range(1, 32)]
_xtick_labels += ["10月{}日".format(i) for i in range(1, 32)]
# 设置列表每3个取一个。字体倾斜45度
plt.xticks(_x[::3], _xtick_labels[::3], rotation=45)
plt.xlabel("时间")
plt.ylabel("温度")
plt.title("3月份,10月份温度趋势散点图")
plt.legend(loc="upper left")
plt.show()
假设获取到2017年的内地电影票房前20的电影和电影票房数据,绘制条形图。
from matplotlib import pyplot as plt
font = {'family': 'SimHei',
'weight': 'bold',
'size': '12'}
plt.rc('font', **font)
plt.rc('axes', unicode_minus=False)
a = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5\n:最后的骑士", "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷髅岛", "极限特工:终极回归", "生化危机6:终章",
"乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死一战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊", ]
b = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88,
6.86, 6.58, 6.23]
# 设置图形大小
plt.figure(figsize=(20, 10), dpi=80)
# 绘制条形图
# plt.bar(range(len(a)),b,width=0.3)
# 绘制横向条形图
plt.barh(range(len(a)), b, height=0.3)
plt.yticks(range(len(a)), a)
# 设置字符串到x轴
# plt.xticks(range(len(a)),a,rotation=90)
# plt.savefig("./movie.png")
plt.grid(alpha=0.3)
plt.show()
# coding=utf-8
from matplotlib import pyplot as plt
font = {'family': 'SimHei',
'weight': 'bold',
'size': '12'}
plt.rc('font', **font)
plt.rc('axes', unicode_minus=False)
a = ["猩球崛起3:终极之战", "敦刻尔克", "蜘蛛侠:英雄归来", "战狼2"]
b_16 = [15746, 312, 4497, 319]
b_15 = [12357, 156, 2045, 168]
b_14 = [2358, 399, 2358, 362]
bar_width = 0.2
x_14 = list(range(len(a)))
x_15 = [i + bar_width for i in x_14]
x_16 = [i + bar_width * 2 for i in x_14]
# 设置图形大小
plt.figure(figsize=(16, 8), dpi=80)
plt.bar(range(len(a)), b_14, width=bar_width, label="9月14日")
plt.bar(x_15, b_15, width=bar_width, label="9月15日")
plt.bar(x_16, b_16, width=bar_width, label="9月16日")
# 设置图例
plt.legend()
# 设置x轴的刻度
plt.xticks(x_15, a)
plt.show()
应用场景:数量统计,频率统计
数据是电影的播放时间,画出直方图。
from matplotlib import pyplot as plt
a=[131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117, 86, 95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137, 92,121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112, 83, 94, 146, 133, 101,131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]
# 计算组数
d = 3
num_bins = (max(a)-min(a))//d
plt.figure(figsize=(16,8), dpi=80)
plt.hist(a, num_bins)
# 设置x轴的刻度
plt.xticks(range(min(a), max(a)+d, d))
plt.grid(alpha=0.2)
plt.show()
plt.hist(a,num_bins,normed=True) # 将纵坐标改为频率
数据是从家到上班地点的时间,与上一个例子不同的是,这个例子给出的数据已经统计好了,而不是原始数据。一般来说使用plt.hist方法是那些没有统计过的数据。
from matplotlib import pyplot as plt
font = {'family': 'SimHei',
'weight': 'bold',
'size': '12'}
plt.rc('font', **font)
plt.rc('axes', unicode_minus=False)
interval = [0,5,10,15,20,25,30,35,40,45,60,90]
width = [5,5,5,5,5,5,5,5,5,15,30,60]
quantity = [836,2737,3723,3926,3596,1438,3273,642,824,613,215,47]
#设置图形大小
plt.figure(figsize=(20,8),dpi=80)
plt.bar(interval,quantity,width=width)
temp_d = [5]+ width[:-1]
_x = [i-temp_d[interval.index(i)]*0.5 for i in interval]
plt.xticks(_x,interval)
plt.xlabel("时间")
plt.ylabel("人数")
plt.grid(alpha=0.4)
plt.show()
直方图应用场景
~用户年龄分布状态
~一段时间内用户点击次数的分布状态
~用户活跃时间的分布状态
百度echarts:前端绘图工具,有代码,图形眩酷。
plotly: 可视化工具中的github,相比于matplotlib更加简单,图形更加漂亮,同时兼容matpoltlib 和 pandas。有些图形有交互效果。使用方法可以按照文档写。
seaborn